JPI Oceans - Deep Sea Mining - Assessing ecosystem functioning in the DISCOL site 26 years after disturbance
Informations
- Funding country
Norway
- Acronym
- -
- URL
- -
- Start date
- 1/1/2015
- End date
- 12/31/2018
- Budget
- 86,100 EUR
Fundings
Name | Role | Start | End | Amount |
---|---|---|---|---|
HAVKYST - The oceans and the coastal areas | Grant | - | - | 86,100 EUR |
Abstract
This is one of the few studies that investigate ecosystem function in an abyssal plain that was previously disturbed by a mimicked deep-sea mining experiment. Despite the low number of replications, the results indicate that the processing of fresh phytodetritus has not fully recovered after 26 years as the uptake of fresh phytodetritus by bacteria, nematodes and holothurians is significantly lower in plow tracks compared to reference sites. Furthermore, the deployment of large (0.25 m2) benthic incubation chambers allowed to determine the role of holothurians in the uptake of phytodetritus and showed that their uptake is highest compared to the other metazoans (meiofauna, macrofauna). The analysis of size-class dependent uptake of the phytodetritus resulted in a higher biomass-specific uptake of phytodetritus for holothurians than for nematodes implying that for the metabolism of holothurians phytodetritus is relatively more important than for the metabolism of smaller size classes. Additionally, the elevated C:N-ratios of incorporated phytodetritus in nematodes and macrofauna relative to their tissue C:N ratio let us speculate that these benthic organisms are likely more carbon than nitrogen limited at this particular study site