Abstract
Current trends in environmental management point towards a common aim: Ecosystem Based Management (EBM) to achieve a holistic approach to ocean management. Several assessment methods and tools exist for environmental management, but they are presently fra gmented with little communication capability. The project will develop an Integrated Model System (IMS) to link effect/risk assessment of oil and gas industry discharges to EBM, focussing on the link from individual to population level and key ecological species in pelagic Arctic food webs. The model system includes plankton and fish, and will be relevant for operational and acute discharges of hydrocarbons in Arctic marine ecosystems. The IMS will provide a link between prognostic and diagnostic assessme nt parameters, and between current tools for Environmental Risk Assessment and Indicators being developed in the Barents Sea and Lofoten Management Plan. This gives an opportunity to assess predicted effects/risk and monitoring data coherently using the s ame standards and requirements. The project uses central ecological properties such as organism fitness (production, reproduction, growth and mortality), prognostic assessments (effect/risk predictions) and biological indicators at different organization levels and time scales for diagnostic assessments (field monitoring). To integrate discharges and risk assessment with population level effects, the focus from individual to population is balanced with a focus from discharge to individual effects. Existin g methods will be used, but for Arctic application data on Arctic key species will be produced. Methods and models will be developed and adapted to these ecosystems. Approaches include data mining, laboratory studies and development of biological monitori ng tools and assessment procedures. Laboratory studies will focus on krill, which have key relevance in Arctic sea food webs. Analysis of existing material will produce new data for oil sensitivity in herring la