Abstract
Nederland heeft de komende jaren te maken met grote uitdagingen op het gebied van landbouw, water en voedsel. Onder andere de biodiversiteit staat enorm onder druk en een veranderd duurzaam voedselproductiesysteem moet het tij gaan keren. Maar dan moeten we ook goed kunnen meten wat de veranderingen opleveren zodat we ook kunnen bijsturen als maatregelen niet het gewenste effect hebben. In het kader van nationale en Europese wetgeving vindt al veel monitoring plaats van biodiversiteit. Met name de aantalsontwikkelingen van flora en fauna en de veranderingen in vegetatie in natuurgebieden. Echter, zogenaamde effectmonitoring waarbij de effecten van ingrepen op biodiversiteit worden gemonitord vindt vaak veel minder plaats. Dit kan bijvoorbeeld gaan om effecten van exoten bestrijding of effecten van bepaalde beheermaatregelen (bijvoorbeeld plaggen) om de negatieve impact van stikstofdepositie te verkleinen. Dit komt deels door geldgebrek maar ook doordat snelle, precieze monitoringstools (nog) niet voorhanden zijn. In dit project willen we met behulp van automatische beeldherkenning (op basis van kunstmatige intelligentie en zogenaamde deep learning modellen) luchtopnames van natuurgebieden analyseren. De luchtopnames worden gemaakt met zogenaamde multi-spectrale camera’s die aan drones bevestigd zijn. Door deze camera’s kunnen tot op een halve centimeter nauwkeurig foto’s worden gemaakt. Met behulp van automatische beeldherkenning van dergelijke nauwkeurige foto’s kan effectmonitoring veel beter worden uitgevoerd. We richten ons daarbij met name op het in kaart brengen van vergrassing door stikstofdepositie en het meten van effecten van exotenbestrijding.